Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Xia Liu,^a Zhi-Guo Wang^b* and An-Xin Wu^b

^aSchool of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi, Hubei 445000, People's Republic of China, and ^bKey Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: chwangzg@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.004 Å R factor = 0.056 wR factor = 0.151 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diethyl 2,3-bis(4-methoxybenzoyl)succinate

The title molecule, $C_{24}H_{26}O_8$, has approximate twofold rotation symmetry and the crystal structure is stabilized by intermolecular $C-H\cdots\pi$ interactions.

Received 28 February 2006 Accepted 2 March 2006

Comment

1,4-Diketones are versatile intermediates for the synthesis of some natural products containing cyclopentanone and furan rings (McMurry & Meiton, 1971; Ito *et al.*, 1975, 1977). The structures of the 1,4-diketones (2RS,3SR)-diethyl 2,3-bis(3,4,5-trimethoxybenzoyl)succinate (Meng & Wu, 2005) and (2RS,3SR)-diethyl 2,3-bis(3,4-dimethoxy-benzoyl)succinate (Wang *et al.*, 2005) have been reported recently and shown to be *meso* isomers. As a continuation of our interest in this area, the structure of the title compound, (I), is presented.

The X-ray crystallographic analysis shows (I) to possess an approximate twofold axis (Fig. 1 and Table 1) in contrast to the above-mentioned structures. The main feature of the crystal packing are $C-H\cdots\pi$ interactions, as summarized in Table 2.

Experimental

Compound (I) was synthesized as reported previously (Wu *et al.*, 1997). Crystals appropriate for data collection were obtained by slow evaporation of a methanol–ethyl acetate $(1:1 \nu/\nu)$ solution of (I).

Crystal data	
$C_{24}H_{26}O_8$	$D_x = 1.291 \text{ Mg m}^{-3}$
$M_r = 442.45$	No $\kappa\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 3551
a = 13.079(5)Å	reflections
b = 9.611 (4) Å	$\theta = 2.4-23.5^{\circ}$
c = 18.572 (7) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 102.757 \ (8)^{\circ}$	T = 292 (2) K
$V = 2276.9 (15) \text{ Å}^3$	Block, colorless
Z = 4	$0.30 \times 0.20 \times 0.18 \text{ mm}$

Bruker SMART CCD area-detector	3133 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.030$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction: none	$h = -13 \rightarrow 15$
11106 measured reflections	$k = -11 \rightarrow 9$
4009 independent reflections	$l = -16 \rightarrow 22$

© 2006 International Union of Crystallography All rights reserved

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0656P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.056$	+ 0.8894P]
$wR(F^2) = 0.151$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
4009 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
293 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

C9-C10	1.532 (3)		
C8-C9-C10 C8-C9-C19	110.75 (19) 108.68 (19)	C9-C10-C11 C9-C10-C22	111.02 (18) 110.53 (18)
C10-C9-C19	109.62 (18)	C11-C10-C22	107.06 (18)

Table 2

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of benzene ring C2-C7.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \text{C14}{-}\text{H14}{\cdot}{\cdot}{\cdot}\text{Cg1}^{\text{i}} \\ \text{C16}{-}\text{H16}{\cdot}{\cdot}{\cdot}\text{Cg1}^{\text{ii}} \end{array}$	0.93	2.92	3.743 (3)	148
	0.93	3.00	3.689 (4)	132

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

The methyl H atoms were constrained to an ideal geometry, with C-H distances of 0.96 Å and $U_{\rm iso}(\rm H) = 1.5 U_{eq}(\rm C)$, but each group was allowed to rotate freely about its C-C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.96 Å for aromatic and 0.97 Å for methylene H atoms, and with $U_{\rm iso}(\rm H) = 1.2 U_{eq}(\rm C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to

Figure 1

View of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors are grateful to the Foundation of Hubei Institute for Nationalities (No. 2005LB002) for financial support.

References

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.

- Ito, Y., Konoike, T., Harada, T. & Saegusa, T. (1977). J. Am. Chem. Soc. 99, 1487–1493.
- Ito, Y. Konoike, T. & Saegusa, T. (1975). J. Am. Chem. Soc. 97, 649-651.
- McMurry, J. E. & Meiton, J. (1971). J. Am. Chem. Soc. 93, 5309-5311.
- Meng, X.-G. & Wu, A.-X. (2005). Acta Cryst. E61, o3117-o3118.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, Z.-G., Chen, A.-H., Hu, S.-L. & Wu, A.-X. (2005). Acta Cryst. E61, 03172–03173.
- Wu, A., Zhao, Y., Chen, N. & Pan, X. (1997). Synth. Commun. 27, 331-336.